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A method for direct calculation of localized non-orthogonal orbitals, which 
has been proposed by the authors recently, is extended to cases where the 
overlap between different subsystems is very large. This is achieved by using a 
steepest-descent procedure. In addition, a computationally simple treatment 
of correlation effects is introduced into the method by means of the density 
functional formalism. Results of the method are given for e.g. LiH, CHr Ne2, 
CO, (FH)2. 
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1. Introduction 

Localized orbitals are of particular importance for the reduction of the com- 
putational effort in ab initio HF calculations. 

This is due to the following reasons: 

Firstly, localized orbitals determined in calculations on small molecules are 
transferable to large molecule clusters, at least as an appropriate starting point for 
the SCF iteration [1 ]. 

Secondly, molecular symmetry can be taken into account in a rather simple way 
when using localized orbitals; this is most easily seen for solids with translational 
symmetry: the localized Wannier functions of a single elementary cell contain all 
the information on the wave function of the solid [2]. 

Thirdly, for non-orthogonal localized orbitals a corresponding partitioning of the 
basis set seems to be possible with relatively small loss in the accuracy of the HF 
ground state energy [3]. 
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Finally, the attachment of the localized orbitals to subsystems permits a classifica- 
tion of the interactions into strong intra-group interactions and interactions 
between orbitals from different subsystems, which should be weaker in comparison. 

The latter can be treated in an approximate way, as has been shown in [4]. 

The direct calculation of localized orbitals was initiated by the work of Adams and 
Gilbert [-5, 6] and has been undertaken by several authors since then [3, 4, 7-17]. 
The use of a localization operator A, suggested by Adams and Gilbert, leads to two 
difficulties, however : 

Firstly, in many cases A is chosen in such a way that the HF iteration yields 
localized or delocalized orbitals depending on the initial choice of the orbitals 
[3, 7, 81 ; this problem does not appear if truncated localized basis sets are used for 
the subsystems, but in this case the degree of localization becomes basis-set 
dependent. 

Secondly, for very strong overlap between different subsystems, serious con- 
vergence problems may arise; these problems can be overcome, naturally, by 
orthogonalizing or semiorthogonalizing basis functions belonging to different 
localization centres, but in this case the computational effort increases rapidly. In 
this paper a steepest-descent method is described which avoids the above-men- 
tioned difficulties. 

The treatment of correlation has not been considered so far in connection with the 
direct determination of localized orbitals. The reduction of the computational 
effort for the HF calculation makes sense only if correlation is included in a rather 
simple way. A CI calculation [-18] or a perturbational treatment as in the PCILO 
method [19] would involve complicated matrix element evaluation on the ab 
initio level. In this paper we propose an alternative method based on the density 
functional formalism [20] to evaluate the correlation energy directly. 

2. The Method 

We give here a brief outline of our method; only those points which differ from our 
first paper in this series [4] are described in detail. 

The procedure for the direct determination of localized HF orbitals can be broken 
down into the following six steps: 

1) A correspondence is established between basis functions, occupied HF orbitals 
and subsystems. Different subsystems need not necessarily be attributed to 
different localization centres: our treatment includes the construction of non- 
orthogonal (pseudo-) orbitals belonging to the same atom. One then makes an 
initial guess for the localized orbitals; the number of orbital coefficients Cp~ is 
relatively small, the coefficients being non-vanishing only ifp and c~ belong to 
the same subsystem. After that, the orbitals are symmetrically orthogonalized 
within eactl subsystem. 
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2) The Fock matrix is evaluated in blockdiagonal form; matrix elements between 
different subsystems need not be calculated. For the interaction of a given sub- 
system with the others a Hartree-type approximation is introduced (exchange 
terms are neglected; for the Coulomb terms a superposition of least-squares 
fitted charge densities is used). The computational effort in this stage is given by 
max(n3N, nN2). 

(n: maximum number of basis functions for a single subsystem, 
N: total number of basis functions) 

For large clusters N>>n holds, and the computational effort increases only as 
N 2" 

3) For non-orthogonal orbitals the total energy can be expressed by 

E= ~ (F~I3+h~)SL 1 (1) 

(e,/3: orbital indices) 

A steepest-descent method employing the energy gradient with respect to the 
elements of the density matrix has been proposed by McWeeny [21]; the use of 
the energy gradient with regard to the LCAO coefficients has been discussed by 
Fletcher [22, 23]. The latter approach seems to be more appropriate in con- 
nection with our method than McWeeny's because the orbital-coefficient 
matrix has block structure which is not true for the density matrix 

For the energy gradient the non-orthogonality of the localized orbitals has to be 
taken into account; we get: 

~E 
- -  = 4(Br,-- A~B Ba,) (3) ~cr~ 

with Arv = S~ S~ 1 

(~,//, 7: orbital indices, r: basis function index) 

The second derivative of E with respect to C~ and C=~ (neglecting OFp~/r 
yields 

02E 

c? C,.~, ~ C s~, 
=4S~ ~(F,.=- A,.=F,s- F~,A~=+ A,.=F=pAps ) 

- 4 ( S ~  ~B~,~,)(S,.=- Ar~ Sp=) 
c?E OE 

- A'v ~C=~, A=~, c~C,., t (4) 

In the first approximation we insert S~1~ 6=~ in (1), (3) and (4); all expressions 
can then be evaluated in terms of the integrals calculated in step 2. 
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4) In order to improve successively on this first approximation, two-body (and, 
if required, three- and four-body) corrections are determined. To do that, steps 
2 and 3 are repeated, combining pairs (tripels, quadrupels) of subsystems to 
new extended subsystems. For these new systems correction terms of the 
following form are added to the inverse overlap matrix: 

S~ ~ - �89 ~ (S~ S~ ~ + Sg ~S,~) A=, ~ (5) 
7 

A = ~1 if e,/~ belong to the same subsystem 

{0 otherwise. 

The terms (5) are constructed in such a way that corrections with vanishing 
trace in the density matrix result; when taken together these corrections build up 
the exact HF density matrix (2). We have shown in [4] that it is in most cases 
sufficient to include two-body corrections between neighbouring subsystems 
in (1). 

5) Using the corrected expressions for the energy gradient (3) and the second 
derivative ~2E/OC,.~,OC=~, (4), a new set of improved orbitals is generated by 
solving for each orbital 7 

O2E ~E 
Z,. AC,.~, OCr~'~C=~, - OCs~, (6) 

Steps 2 to 4 are then repeated until self-consistency is achieved. 

6) After the SCF iteration has converged the charge density is used to calculate the 
correlation energy. 

Hohenberg and Kohn [20] have shown that for the ground state of each 
symmetry type the correlation energy can be evaluated exactly if the exact 
charge density, the exchange-correlation functional and the HF energy are 
known. We approximate the exact charge density by the HF density and the 
correlation functional by the corresponding expression for the electron gas: 

ec(p): 

f pec (p) (7) &, 

correlation energy per unit charge of a homogeneous electron gas 
with charge density p. 

For ec(P) we employ an analytical fit proposed by Gunnarsson and Lundqvist 
[25]. Our treatment deviates from that of Gunnarsson and Harris [25, 26] in 
that we do not approximate both exchange and correlation by the local density 
functional. 

For the evaluation of (7) we break the charge density p down to partial densities 
p~ with regard to the subsystems i and integrate using spherical coordinates for 
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each localization centre: 

aEc= ~ f Piec(P) & 

= Z f dr~r~ f p,~c(p) dOi (8) 

For the angular integration we average e~(p) analytically 

P ~ P = ~. p, p dO, (9) 
[. Pi dOi 

Then a numerical integration over r~ follows. The computational effort for the 
calculation of (7) is proportional to N 2. 

3. Applications 

The method described above should be useful for large molecule clusters where the 
computational effort for ab initio HF calculations is prohibitive. In order to assess 
the merits and shortcomings of the method, however, we compare results for some 
small molecules with results fi'om conventional ab initio HF-Roothaan calcula- 
tions (Tables 1-7). 

1) LiH: We have introduced two subsystems here, one for each orbital. To des- 
cribe the polarization of the ls(H)-orbital, the p- and the most diffuse s- 
function on Li have been attributed to subsystem 2. Table 1 shows some 
points of the potential curve. Our results (E) differ from the conventional 
ab initio results (EHv) by ~ 10 -3 a.u. This is due to the restriction which the 
partitioning of the basis set imposes on the variational freedom. 

Table 1. Results for LiH 

(All values are given in a.u.) 

Basis set: Li: 5s/ lp  

H: 5s 

Definition of  the subsystems : 

Subsystem Orbital 

1 ls  (Li) 

2 ls  (H) 

Basis functions 

Li: s t . . . . .  s 5 
H: s l , . . . , s  5 
Li: s s , p  

Total energy E as a function of the LiH-distance r : 

r E EHF 
2.92 --7,96913 --7.97039 
3.02 -7 .96984 --7.97103 

3.22 - 7,96893 - 7.97005 
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Table 2. Results for CH 4 
(All values are given in a.u.) 

Basis set: C: 6s/2sp (hybrid) 
H: 5s 

Definition of the subsystems: 
Subsystem Orbital 
1 ls (C) 
2 . . .  5 a (CH) 

Basis functions 
C :  S l ~  . . . ,  S 6 

H: s l , . . . ,  s s 
C: spl, sp2 

Totalenergy E and equflibriumCHdistance r: 
2-body-approx. 3-body-approx. HF 

E -39.6867 -39.6148 -39.7445 
r 1.184 1.181 1.176 

Breakdown ofthe 2-and 3-body corrections 
C--acn :  0.325 aCH--aCH: 0.277 

a c n - C -  acn: 0.009 aCH--~CH--aCH: 0.005 

2) CH4: Here, too, we have attributed each orbital to a different subsystem. The 
deviation in the total energy is larger ( ~  10-1 a.u.) due to the fact that the 
overlap between the orbitals is very strong. Nevertheless, the 3-body cor- 
rections are small in comparison to the 2-body terms, indicating a rapid 
convergence of the expansion for the total energy. 

3) Ne: All subsystems belong to a common localization centre. In this special 
case our method can be described as an ab initio pseudopotential method. 
Contrary to the usual pseudopotential procedures, which consider only two 
subsystems (valence and core), the number of subsystems here is only 
restricted by the number of orbitals (5 for Ne). The error in the total energy 

Table 3. Results for Ne 
(All values are given in a.u.) 

Basis set: 7s/3p 

Definition of the subsystems: 
Subsystem Orbital 
1 ls 
2 2s 
3 . . . 5  2p 

Total energy: 
2-body-approx. 

- 128.2920/- 128.3567 

Basis functions 
$ 1 , . . . ~  S 5 

$6~ $ 7 / $ 5 , . . . ,  S 7 

Pl," ' ",P3 

3-body-approx. HF 
- 128.1695/- 128.2534 - 128.2834 

Breakdown o f2 -and  3-body corrections: 
l s -  2s 5.9615 2s-2p 
l s -2p  0.0073 2pi-2pj 
l s - 2 s - 2 p  0.0408 

--0.3308 
0.0031 
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Table 4. Results for Ne 2 
(All values are given in a.u.) 
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Basis set, subsystems as in Table 3. 

Total energy E as function o f t h e N e - N e  distance r: 

r E (2-body-approx.) EnF 
2 -- 255.6349 --255.4004 

3 -- 256.5227 --256.4816 

4 --256.5799 --256.5641 

5 -- 256.5839 --256.5669 

6 -- 256.5840 --256.5669 

Breakdown of 2-body corrections ( >~ 0.1) for r = 3. 

1SA/2S A 0.9211 lSA/2p~ B --0.2565 2SA/2px B 0.3890 

2SA/2Px A --0.1622 2SA/2S B --0.2196 2PxA/2Px B 0.4682 

is ~ 10 -1 a.u., if the 2s-pseudoorbital is built up from two basis functions; 
if three functions are used, the error decreases to ~ 10 -2 a.u. 

4) N%: The values which we obtain for the repulsive curve are in reasonable 
agreement with the HF values, although the overlap for r = 2 and r = 3 bohr 
is very strong (this is indicated by the large two-body corrections A/B 
between different atoms and the large change in the intraatomic two-body 
corrections A/A). 

5) FH : Here one of  the subsystems includes two orbitals. The two-body corrections 
give the total energy with an accuracy of --~ 10 .2  a.u. 

6) (FH)2: The difference between our values and the HF results is rather large 
here both for the binding energy and the equilibrium F - F  distance. These 
deviations are due to the basis superposition effect, which is not negligible 

Table 5. Results for FH 

(All values are given in a.u.) 

Basis set: F : 4s/2p 
H: 2s 

Definition of the subsystems : 

Subsystem Orbital  Basis functions 

1 is(F), 2s(F) F:  s 1 . . . . .  s 4 
2 a(FH) H:  s l ,  s 2 

F:  s 4 , p l , p 2  
3,4 Py, ~(F) F: P l , P 2  

Total energy E and equilibrium FH distance r : 

2-body-approx. HF 

E -96.8159 -96.8373 
r 1.855 1.845 
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Table 6. Results for (FH)2 

(All values are given in a.u.) 

Basis set as in Table 5. 

Geometry:linear, F - H . . .  F - H ,  dvn = 1.733 

each FH monomer defines a subsystem. 

Binding energy En and equilibrium FH-distance r : 
2 -body-approx .  H F  

E B 0.0057 0.0103 

r 5.8 5.1 

2-body correction at r = 5 : 0.0214 

H. Stoll,  G. Wagenblast and H. Preuss 

for the HF calculation with the relatively small 4s/2p basis set. As our method 
explicitly avoids basis superposition, it is not surprising that our values are in 
good agreement with the results of [27] which are near the HF limit (Es = 
0.0055 a.u. ,  r =  5.5 b). 

7) CO: Our total energy value differs from the HF result by -,~ 10-1  a.u. ; it could 
be improved probably by adding the s2-functions to the a(CO) basis set. 

In order to test the correlation density functional derived from the electron gas 
formula [25], we have calculated correlation energies for atoms (Table 8) and the 
correlation contribution to the binding energy of diatomic molecules (Table 9). 
Table 8 shows (in agreement with results of Tong [24]) that the electron gas 
expression overestimates the correlation energy by a factor 2-3. 

This is not surprising: The electron gas formula is only expected to be a good 
approximation if the electron number is large and the electron density nearly 

Table 7. Results for CO 
(All values are given in a.u.)  

Basis set: C: (7s/3p)/[4s/2p] 
O: (7s/3p)/[4s/2p] 

Definition of the subsystems : 
Subsystem Orbital Basis functions 
1 Is(C) C: s l , s  2 

2 ls(O) O:  s 1, s 2 
3 o r ( C O )  C :  s3,s4,pl,p2 

O: S3,84,P1,P2 
4, 5 n(CO) C:  Pl,Pz 

O: Pl,P2 

Total energy E and equilibrium CO-distance r: 
2-body-approx. H F  

E --112.4917 - 1 1 2 . 5 6 4 3  
r 2.14 2.12 
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Table 8. Correlation energy of atoms, a) Electron gas approximation, 
b) exact non-relativistic results [28], c) ratio a/b 
(All  values are given in a.u.)  

Basis set a) b) c) 

H 6s - 0.03576 - -  

He  8s - 0 . 1 3 8 5 3  - 0 . 0 4 2 0  3.3 

Li 7s - 0.19079 - 0.0454 4.2 

C 7s/3p - 0 . 4 4 6 1 1  - 0 . 1 5 5 1  2.9 

N 7s/3p - 0.53732 - 0 . 1 8 6 1  2.9 

0 7s/3p -- 0.66668 - 0.2539 2.6 

F lOs /5p  - -0 .79160 - 0.3160 2.5 

N a  10s/4p - 0.99340 - 0.386 2.6 

homogeneous; for the atoms of Table 8, however, we have few electrons and, at 
least near the atomic nucleus, the density gradient is very large. 

Nevertheless, the electron gas approximation can be useful if we consider correla- 
tion energy differences, e.g. between molecules and the constituent atoms: The 
changes in the electron density are rather small and homogeneous and the electron 
number remains constant. Table 9 proves these points: The binding energies 
become considerably better than the HF binding energies in all cases. The cor- 
relation contribution to the binding energy is in general too small, however; 
the results are best for the alkali diatomics Liz, Na2, where ~ 90~o of the cor- 
relation contribution is recovered; the error becomes larger with increasing 
number of valence electrons: we obtain for N 2 ~ 60~o and for F 2 ~,-50~o of the 
correlation contribution. The reason is the following: we calculate the correlation 
energy using the HF charge density; this density is a valid starting-point only if the 
HF determinant is the leading term in the CI expansion of the ground-state wave- 
function. If the number of near-degenerate states increases, the accuracy of our 
results is expected to become poorer. 

Table 9. Correlation energy of diatomic molecules, a) Binding energy (correlation 
treated in the electron gas approximation), b) experimental values of the binding energy, 
c) contribution of correlation (in electron gas approximation) to the binding energy, 
d) experimental binding energy minus RHF energy. 
(All  values are given in a.u.) 

Basis set a) b) c) d) 

H 2 5s/lp 0. t 807 0.1745 0.0477 0.0411 
Li 2 7s/2p 0.0361 0.0386 0.0307 0.0323 
L iH  7s/2p, 5p 0.0981 0.0926 0.0464 0.0382 

N 2 7s/3p 0.2024 0.3638 0.1038 0.1702 

CO 7s/3p, 7s/3p 0.2856 0.4132 0.0708 0.1232 
F H  lOs/5p, 5s/2p 0.1843 0.2249 0.0446 0.0661 

F 2 7s/3p 0.0025 0.0617 
Na 2 lOs/4p 0.0253 0.028 
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